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Mesoscopic stability and sedimentation waves in settling periodic arrays

B. U. Felderhof*
Institut für Theoretische Physik A, RWTH Aachen Templergraben 55, 52056 Aachen, Germany

~Received 6 June 2003; published 11 November 2003!

The stability of a periodic array of particles settling in a viscous incompressible fluid under the influence of
gravity is investigated in the framework of the point sedimentation model. The simple cubic array is unstable,
but the body-centered and face-centered cubic arrays with gravity directed along one of the crystal axes are
mesoscopically stable, i.e., they are stable except for very long wavelength in a certain domain of directions of
the wave vector. In such mesoscopically stable arrays the instability is suppressed in periodic boundary
conditions for systems smaller than a maximum size. In a stable finite system the particles perform small
motions about the positions of the regular array, and sedimentation waves propagate through the system.
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I. INTRODUCTION

The average velocity of particles and fluid in a suspens
of spheres settling in a viscous incompressible fluid has b
studied in detail for both ordered arrays and disordered
tems of particles. In a pioneering work Hasimoto@1# showed
how to construct and interpret a solution of the steady s
Stokes equations for infinite regular arrays. At low partic
volume fractionf the sedimentation velocity decreases fro
the Stokes value in proportion tof1/3, and it steadily de-
creases further at higher volume fraction@1–3#. Batchelor@4#
first showed that for disordered systems, with complete
glect of correlations in particle positions, the sedimentat
velocity decreases rapidly with volume fraction, in propo
tion to 126.55f. Calculations to higher order in volum
fraction @5,6# suggest that the sedimentation velocity of
disordered system vanishes at a volume fraction of ab
20%. The lack of experimental evidence for this pheno
enon indicates that the assumption of a disordered h
sphere distribution is not correct@7#. The determination of
the statistical distribution of a disordered sedimenting s
pension and the calculation of the corresponding sedime
tion velocity is still an open problem@8–10#.

The calculation of the variance of particle velocity flu
tuations leads to worse difficulties. Even for dilute system
where the point approximation is reliable, the variance
verges with the size of the system if the particle distribut
is random@11,12#. It has been suggested that a form of h
drodynamic screening is necessary to keep the variance fi
@13#. The divergence with the size of the system is not s
in experiment@14#. Several theoretical explanations ha
been advanced@15–19#.

In the following, we study the stability of sedimentin
periodic arrays in point approximation. The point approxim
tion applies to sufficiently dilute systems. Crowley h
shown that linear and planar regular arrays are not st
@20,21#, but he reserved judgment on three-dimensional
rays. Three-dimensional regular arrays are reputed to be
stable@10,22–24#. We find that such arrays are mesosco
cally stable for suitable crystal structure and orientation w
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respect to the direction of gravity, i.e., they are stable exc
for very long wavelength of the disturbance. Mesoscopica
stable arrays are unstable on a macroscopic length scale
the instability is suppressed in periodic boundary conditio
for systems smaller than a maximum size that is many tim
larger than the size of a unit cell of the array.

II. PERTURBATION OF HASIMOTO’S SOLUTION

We consider a system of identical spherical particles
radius a immersed in a viscous incompressible fluid wi
shear viscosityh. In Hasimoto’s solution of the steady sta
Stokes equations the particle centers are located at a re
array of positions

Rn5n1a11n2a21n3a3 ~n1 ,n2 ,n350,61,62, . . . !,
~1!

where a1 ,a2, and a3 are the basic vectors determining th
unit cell of the array. The fluid velocityv and pressurep
satisfy the linear Navier-Stokes equations

h¹2v2“p52F~r!, “•v50, ~2!

whereF(r) is the force density acting on the fluid. In poin
approximation the force density is given by

F~r!5(
n

Kd~r2Rn!, ~3!

whereK is the force of gravity acting on each particle. Aga
in point approximation Hasimoto’s solution for fluid velocit
and pressure takes the form

vH~r!52U1TH~r!•K,
~4!

pH~r!5
1

vc
K•r1QH~r!•K,

wherevc is the volume of the unit cell and the Green fun
tionsTH(r) andQH(r) have the periodicity of the lattice. Th
Hasimoto tensorTH(r) has the property
©2003 The American Physical Society02-1
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E
vc

TH~r!dr50, ~5!

so that in point approximation2U is the mean fluid velocity
related to the forceK by K5zU, where z56pha is the
friction coefficient of a single particle. Hasimoto has cons
ered corrections due to finite particle size. His calculatio
were complemented by Zick and Homsy@2# and by Sangan
and Acrivos@3#.

In Hasimoto’s solution the regular array of particles is
rest. Next we consider a situation where the particles
displaced from the regular positions. The actual position
the particle corresponding to lattice siteRn will be

rn5Rn1sn, ~6!

with displacement vectorsn . The fluid velocity and pressur
are modified to

v~r!5vH~r!1(
n

@T~r2rn!2T~r2Rn!#•K,

~7!

p~r!5pH~r!1(
n

@Q~r2rn!2Q~r2Rn!#•K,

with Oseen tensor and vector

T~r!5
1

8ph

11 r̂ r̂

r
, Q~r!5

r̂

4pr 2
. ~8!

The sums converge if the displacements decay sufficie
fast with distance from the origin. The particle velocityun
and the forceK are related by

K5z~un2vn8!, ~9!

wherevn8 is the velocity field incident on particlen. To first
order in the displacements,

dsn

dt
5 (

mÞn
~sn2sm!•“T~r!uRn2Rm

•K. ~10!

By symmetry the first term does not contribute, so that
can write

dsn

dt
52

K

8ph (
mÞn

Fnm•sm , ~11!

where the tensorFnm5F(Rn2Rm) is given by

F̃~R!5
]

]R
T̂~R!•K̂, ~12!

with the definitionsT̂(R)58phT(R) andK̂5K/K. The ten-
sor F(R) has Cartesian components
05140
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Fab~R!5dab

K̂•R

R3
2K̂a

Rb

R3
1K̂b

Ra

R3
23

K̂•R

R5
RaRb .

~13!

We note that the tensor is traceless,

TrF~R!50, ~14!

since“•T(r)50. In the following section we study the so
lution of the linear equations of motion~11!.

III. LINEAR EQUATIONS OF MOTION

Crowley’s results on one- and two-dimensional arra
suggest that the regular arrays studied by Hasimoto are
stable if the particles are free to move. In this section
study stability by use of the linear equations of motion~11!.
The periodicity of the regular array suggests plane wave
lutions. Substituting a plane wave of the form

sn~ t !5ukexp~ ik•Rn2 ivt !, ~15!

we obtain

vKF̂~k!•uk5v~k!uk , ~16!

with characteristic frequency

vK5
K

8phd2
. ~17!

The real-valued dimensionless tensorF̂(k) is given by the
lattice sum

F̂~k!5 id2(
n

8 F~Rn!exp~ ik•Rn!. ~18!

Here we have used the antisymmetry under inversionF
(2R)52F(R). Upon substitution of Eq.~13! we can evalu-
ate the lattice sum by the method of Ewald summation@25#.
For kÞ0 the lattice sum is absolutely convergent, but t
sum diverges in the limitk→0. It turns out that the eigen
frequencies remain finite.

In the notation of Nijboer and de Wette@25# we consider
the lattice sum

S8S RU k

2p
,pD5(

n
8

exp~ ik•Rn!

uR2Rnu2p
. ~19!

The tensorF̂(k) can be expressed as

F̂~k!5X~k!11Y~k!1Z~k!, ~20!

where Y(k) is antisymmetric andZ(k) is symmetric. The
scalarX(k) is given by
2-2
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X~k!5d2K̂•
]

]k
S8S 0U k

2p
,
3

2D . ~21!

By inversion symmetry of the array the sumS8„0u(k/2p),p…
is real for realp and symmetric under inversionk→2k. The
antisymmetric tensorY(k) has components

Yab~k!52d2S K̂a

]

]kb
2K̂b

]

]ka
DS8S 0U k

2p
,
3

2D ~22!

and the symmetric tensorZ(k) is given by

Z~k!53d2K̂•
]3

]k]k]k
S8S 0U k

2p
,
5

2D . ~23!

The tensorF̂(k) depends only on crystalline structure and
the direction of the force. For each wave vectork in the first
Brillouin zone @26# there are three eigenfrequenciesv(k).

Actually, it suffices to consider only half the first Brilloui
zone, because the dynamical matrix has the symm

F̂(2k)52F̂(k). The eigenfrequencies for6k are related by

v1~2k!52v21* ~k!, v0~2k!52v0~k!. ~24!

It suffices to consider wave vectorsk for which v0(k)>0,
since the waves for2k describe the same physical situatio
as fork. We call the wave with frequencyv0(k) the acoustic
wave, since we find thatv0(k) tends to zero fork→0. For
unstable modes the eigenfrequenciesv61(k) of the optical
waves are complex conjugate. We denote the growth rat
unstable waves asl1(k).0. One can study the behavior i
the limit k→0 in a separate asymptotic analysis keeping o
the dominant terms.

It is convenient to use wave vectorsq5kd/2p and to
define components (q1 ,q2 ,q3) in terms of the basic vector
of the reciprocal lattice by

q5~q1b11q2b21q3b3!d. ~25!

Similarly for the vector x5r/d we define component
x1 ,x2 ,x3 by

x5~x1a11x2a21x3a3!/d. ~26!

These are related to the cartesian vector componenr
5(x,y,z)5(r 1 ,r 2 ,r 3) by the linear transformation

r a5Sabxb, ~27!

with matrix elementsSab5ea•eb . Since the scalar produc
k•r equals 2pq•x one has

2pqa5Sbakb . ~28!

The Ewald representation used by Nijboer and de Wette@25#
reads in present notation
05140
ry
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S8S 0U k

2p
,pD5

1

d2pG~p!
F(

n
8

G~p,pxn
2!

xn
2p

exp~2p iq•xn!

2
pp

p
1

p2p23/2

va
(

n
uhn2qu2p23

3GS 2p1
3

2
,puhn2qu2D G , ~29!

whereva5a1•(a23a3)/d3 is the dimensionless volume of
unit cell, G(p,z) is the incomplete gamma function, andhn
are the reciprocal lattice vectors

hn5~n1b11n2b21n3b3!/d, ~30!

where n1 ,n2 ,n3 are integers. We need expression~29! for
the valuesp5 3

2 andp5 5
2 .

The differentiations in Eqs.~21!–~23! can be performed
in the Ewald representation of the lattice sums. The requ
lattice sums can be evaluated straightforwardly for selec
wave vectorsk, providedk is not too small. The dynamica

matrix F̂(k) is calculated from the derivatives defined in Eq
~21!–~23! of the Ewald sum given by Eq.~29!. The numeri-
cal calculation fails at long wavelengths because of the
vergence of the dynamical matrix. Typically the smalle
wavenumber considered in the calculation isk50.001
32p/d.

Consider first the simple cubic array with basic vecto
a15(1,0,0)d, a25(0,1,0)d, a35(0,0,1)d and gravity di-
rected along thez axis. We show in the following section tha
this array is unstable for modes with wave vectork with
polar angleu such that the polynomial

A~u!5~sin2u!@1210.7372 cos2u# ~31!

is positive. The maximum growth rate foru5p/2 in the limit
of small k is limk→0l1(k cosw,ksinw,0)52.878 56vK inde-
pendent of the direction ofk in the horizontal plane. Note
that the growth rate does not vanish in the limitk→0, so that
the instability is not of the type discussed by Lahiriet al.
@24# on the basis of macroscopic equations. These auth
did not take proper account of the long-range hydrodyna
interaction. In Fig. 1 we plot the growth ratel1(k) for k
5(k,0,0). The corresponding eigenvector has componen
the x andz directions. The third mode has vanishing eige
frequency and eigenvector in they direction.

Next we consider a body-centered cubic array with ba
vectors @26# a15(1,1,21)d/2, a25(21,1,1)d/2, a35(1,
21,1)d/2 and gravity directed alonga3. We define polar
angles (u,w) of the unit vectork̂5k/k by

k̂5â3cosu1b̂1sinu cosw1â33b̂1sinu sinw, ~32!

with reciprocal lattice vectorb15(1,1,0)/d. The array is un-
stable for modes with wave vectork of small wave numberk
and with direction (u,w) such that the polynomial
2-3
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A~u,w!5sin2u@122.8539 sin2u cos2u

11.0090 sin3u cosu sin 3w# ~33!

is positive. The growth rate is maximal for directio
(u0 ,w0)5(0.7088,p/2), as well as for (u0,7p/6) and
(u0,11p/6), and then takes the valuel155.8016vK . The
eigenfrequencies vary rapidly withk for smallk. We find that
the eigenfrequencies are real except for smallk. In particular,
for direction (u0 ,w0) the eigenfrequencies are real fork
.0.000 1532p/d. Hence the bcc array is mesoscopica
stable. In Fig. 2 we plot the phase velocityv0(k)/k for k
50.00132p/d as a function of direction foru,p/2. The
other part of the surface follows by reflection with respect
the origin. In Fig. 3 we plot the three dispersion curves
v61(k),v0(k) as functions of wave number in the first Bri
louin zone for direction (1,1,1)/A3. Typically the two larger
eigenfrequenciesv61(k) differ significantly from the lower
one. The sum of the three eigenfrequencies is always clos
zero. We find numerically that the eigenvector correspond
to v0(k) is predominantly transverse, also for other dire
tions of k.

FIG. 1. Plot of the growth ratel1(k) for k5(k,0,0) for the
simple cubic array with gravity directed along thez axis. The basic
lattice vectors area15(1,0,0)d, a25(0,1,0)d, a35(0,0,1)d.

FIG. 2. Plot of the phase velocityv0(k)/k in units vKd/2p for
k50.00132p/d for the body-centered cubic array with basic ve
tors a15(1,1,21)d/2, a25(21,1,1)d/2, a35(1,21,1)d/2 and
gravity directed alonga3. The phase velocity is plotted for th
range of directions 0,u,p/2, 0,w,2p.
05140
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Finally we consider the face-centered cubic array w
basic vectors @26# a15(1,1,0)d/2, a25(0,1,1)d/2, a3
5(1,0,1)d/2 and gravity directed alonga3. This array is also
mesoscopically stable. The asymptotic analysis of the
lowing section shows that the frequenciesv61(k) become
complex for very smallk for directionsu,w such that an
angle polynomialA(u,w) is positive. In this case the poly
nomial is a sum of products of cosu,sinu,cosw,sinw consist-
ing of 12 terms with coefficients calculated from lattic
sums. The polynomial is positive in four regions on the u
sphere, related by reflection. The growth rate is maximal
direction (u0 ,w0)5(0.3463,0.9553) and its inverse, an
given by limk0→0l1(k0)55.2887vK . For this direction the

eigenfrequencies are real fork.0.000 1732p/d.
In Fig. 4 we plot the phase velocityv0(k)/k for k

50.00132p/d as a function of direction foru,p/2. Polar
angles are defined as in Eq.~32! with reciprocal lattice vector
b15(1,1,21)/d. The other part of the surface follows b
reflection with respect to the origin. In directions perpendic

FIG. 3. Plot of the eigenfrequenciesv21(k),v0(k), andv1(k)

~bottom to top! as functions of wave numberk for direction k̂
5(1,1,1)/A3 for the bcc array as described in the caption to Fig

FIG. 4. Plot of the phase velocityv0(k)/k for k50.001
32p/d for the face-centered cubic array with basic vectorsa1

5(1,1,0)d/2, a25(0,1,1)d/2, a35(1,0,1)d/2 and gravity directed
along a3. The phase velocity is plotted for the range of directio
0,u,p/2, 0,w,2p.
2-4
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lar to gravity the frequencyv0(k) is vanishingly small for all
values of the wave number. The plot differs significan
from the corresponding plot for the bcc array shown in F
2. As one would expect, the crystal structure has a str
influence on the shape of the dispersion surface. In Fig. 5
plot the three real eigenfrequencies as functions of w
number for direction (1,1,1)/A3. The sum of the three
eigenfrequencies is always close to zero. We find num
cally that the eigenvector corresponding tov0(k) is pre-
dominantly transverse, also for other directions ofk.

For other directions of the gravity field the fcc array b
comes more unstable. As an example we show in Fig. 6
variation of 2Re@v21(k)# and the growth ratel1(k) for
wave vectork50.001@sin(p/8),0,cos(p/8)#2p/d as the di-
rection of gravity changes from (1,0,1)/A2 to (0,0,1) in the
plane spanned by these two vectors. This shows that
orientation of the lattice with respect to gravity is qui
relevant.

In periodic boundary conditions the mesoscopically sta
arrays are stable for system size less than a maximum va
The sedimentation waves found above for such stable ar
are interesting, since we are dealing with a purely dissipa

FIG. 5. Plot of the eigenfrequenciesv21(k),v0(k), andv1(k)

~bottom to top! as functions of wave numberk for direction k̂
5(1,1,1)/A3 for the fcc array as described in the caption to Fig.

FIG. 6. Plot of frequency2Re@v21(k)# ~solid curve! and
growth ratel1(k) ~dashed curve! for the fcc array for wave vecto
k50.001@sinp/8,0,cos(p/8#)2p/d as the direction of gravity
changes from (1,0,1)/A2 to (0,0,1) in the plane spanned by the
vectors.
05140
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system. The structure of the three modes for each wave
tor is determined by lattice symmetry and direction of t
gravitational field. The frequency of each mode is prop
tional to the strength of the field. In a recent experiment@27#
spheres of radiusa51.531022 cm and mass densityrp
54.11 g/cm3 in a fluid of shear viscosityh510 P and mass
density r f50.965 g/cm3 were used. With gravitational ac
celeration g5983 cm/sec2 and interparticle distanced
50.1 cm this corresponds to a characteristic frequencyvK
50.017 s21. Dispersion curves of sedimentation waves ha
not yet been studied experimentally.

IV. LONG-WAVELENGTH LIMIT

As noted above, the dynamical matrixF̂(k) diverges in
the smallk limit due to the long range of the hydrodynam
interaction. We must study the limiting behavior b
asymptotic analysis keeping only the dominant terms. T
analysis makes clear that the limiting behavior depends
the direction of the wave vector with respect to the crys
axes. In this section we present explicit results for the th
cubic arrays with gravity directed along the basic vectora3.

The termn50 in the second sum in Eq.~29! for p5 3
2

yields a logarithmic singularity for smallk, since

G~0,z!5E1~z! ~34!

and the exponential integralE1(z) has the expansion@28#

E1~z!52g2 ln z2 (
n51

`
~21!nzn

nn!
~ u argzu,p!, ~35!

where g is Euler’s constant. The functionG(21,z) corre-
sponding top5 5

2 is given by

G~21,z!5
e2z

z
2G~0,z!. ~36!

The stronger singularity is compensated by the factor mu
plying theG function in Eq.~29!. Performing the derivatives
in Eqs. ~21!–~23! we find that the singular behavior of th
tensorF̂(k) for k→0 takes the form

F̂ab~k,K̂!5
1

k4d
(
gd

CabgdkakbkgK̂d1O~1!, ~37!

with numerical coefficientsCabgd depending on lattice struc
ture. In order to find the coefficients we need to expa

S8„0u(k/2p), 3
2 … to quadratic order in the components ofk,

andS8„0u(k/2p), 5
2 … to quartic order. Thus we write

.

2-5
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S8S 0U k

2p
,pD5

1

d2pG~p!
Fp2p23/2

va
q2p23GS 2p1

3

2
,pq2D

1R0~p!1
1

2
Ri j

(2)~p!qiqj

1
1

24
Ri jkl

(4) ~p!qiqjqkql G1O~k6!. ~38!

Due to invariance under reflections there are no terms od
q. The coefficientsR follow by expansion in Eq.~29!. For
the cubic lattices one can use symmetry consideration
reduce the number of coefficients that need to be calcula

The characteristic equation

det@v̂12F̂~k!#50, ~39!

which yields the eigenfrequencies is a cubic inv̂5v/vK
that takes the form

v̂31c2v̂21c1v̂1c050, ~40!

with dimensionless coefficientsc0 ,c1 ,c2. It turns out that for
the cubic arrays the coefficients remain finite in the limitk
→0, though the limiting behavior depends on the directi
in which the origin ofk space is approached. The coefficien
c0 andc2 vanish ask→0, whereas the coefficientc1 tends to
a nonvanishing constant. As a consequence the rootsv̂61(k)
tend to

v̂61
(0)~u,w!56A2c1

(0)~u,w!, ~41!

wherec1
(0)(u,f) gives the angular dependence of the coe

cient c1(k) in the limit k→0. The rootv̂0(k) tends to

v̂0
(1)~u,w!52

c0
(1)~u,w!

c1
(0)~u,w!

kd

2p
, ~42!

wherec0
(1)(u,w)k gives the limiting behavior of the coeffi

cient c0(k) for small k.
The stability of the array is determined by the sign of t

coefficientc1
(0)(u,w). For each of the cubic lattices we find

domain of angles for which the coefficient is positive, so th
these arrays are unstable. The phase velocity of the aco
wave tends to

vph~u,w!52
c0

(1)~u,w!

c1
(0)~u,w!

vKd

2p
~43!

in the limit of small k. This diverges for angles wher
c1

(0)(u,w) changes sign.
The functionsc1

(0)(u,w) and c0
(1)(u,w) can be evaluated

explicitly in terms of sums of products of trigonometric fun
tions with coefficients given by Ewald sums. For the simp
cubic lattice with basic vectors as defined above Eq.~31! and
with gravity directed along thez-axis one finds for the func
tion c1

(0)(u,w)
05140
in

to
d.

-

t
tic

c1
(0)~u,w!5sin2u@8.2861288.9699 cos2u#. ~44!

The polar angles are defined as in Eq.~32! with the above
basic vectors and reciprocal vectorb15(1,0,0)/d. The func-
tion is positive for 1.4475,u,1.6641. The maximum
growth rate is foru5p/2 and takes the value

lim
k→0

l1~k cosw,k sinw,0!52.878 56vK ~45!

independent of the direction ofk in the horizontal plane. For
the functionc0

(1)(u,w) one finds

c0
(1)~u,w!5sin2u@17.165 cosu2184.304 cos3u#, ~46!

showing that the limiting value of the phase velocity of t
acoustic wave is independent of the azimuthal anglew.

For the bcc array, as defined at the end of the preced
section, one finds for the functionc1

(0)(u,w)

c1
(0)~u,w!5sin2u@269.48361198.3000 cos2u

270.1095 sinu cosu sin 3w#, ~47!

In Fig. 7 we plot the region of the (u,w) plane, where this
function is positive, and hence the array is unstable. In Fig
we plot the functionc1

(0)(u,w) itself. The growth rate is
maximal for direction (u0 ,w0)5(0.7088,p/2), as well as for
(u0,7p/6) and (u0,11p/6), and then takes the valuel1

55.8016vK . For the functionc0
(1)(u,w) one finds

c0
(1)~u,w!521291.91r 3s211406.33rs4

1703.135s5v~4u221!

2600.412r 2s3v~4u221!, ~48!

FIG. 7. The white region is the domain of directions on the u
sphere for which the bcc array is unstable in the long-wavelen
limit.
2-6
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with the abbreviationsr 5cosu, s5sinu, u5cosw, v5sinw.
For the face-centered cubic array with basic vectors

defined above and with gravity directed alonga3 one finds
for the functionc1

(0)(u,w),

c1
(0)~u,w!566.76rsu~122s22s2u2!262.62r 2s2284.42s4

2100.91r 2s2u2150.45s4u2194.41r 3sv

1285.41r 2s2uv2142.71s4uv2151.05rs3u2v

2169.93rs2v3, ~49!

where the angles are defined as in Eq.~32! with the above
basic vectors and with reciprocal lattice vectorb15(1,1,
21)/d. In Fig. 9 we plot the region of the (u,w) plane,
where this function is positive, and hence the array is
stable. In Fig. 10 we plot the functionc1

(0)(u,w) itself. The

FIG. 8. Plot of the functionc1
(0)(u,w) for the bcc array, as given

by Eq. ~47!. The array is unstable where the function is positive

FIG. 9. The white region is the domain of directions on the u
sphere for which the fcc array is unstable in the long wavelen
limit.
05140
s

-

growth rate is maximal for direction (u0 ,w0)
5(0.3463,0.9553) and its inverse, and given
limk0→0l1(k0)55.2887vK . For the functionc0

(1)(u,w) one
finds

c0
(1)~u,w!597.27r 4su11306.24r 3s2u22230.14r 2s3u3

2474.97rs4u4212.58s5u51137.56r 4sv

21657.00r 3s2uv2198.79r 2s3u2v

2611.65rs4u3v275.03s5u4v1720.40r 3s2v2

26.20r 2s3uv213.62rs4u2v22126.35s5u3v2

2262.13r 2s3v31215.52rs4uv32121.44s5u2v3

2544.99rs4v42113.78s5uv4246.41s5v5.

~50!

These asymptotic results suggest that the fcc array is
most stable configuration of the three cubic arrays with gr
ity directed along one of the basic vectors.

V. DISCUSSION

Direct numerical evaluation of the characteristic equati
as presented in Sec. III for the bcc array, suggests that
the bcc array and the fcc array with gravity directed alo
one of the basic vectors are stable. For very smallk direct
numerical evaluation is not feasible, since the elements
the dynamical matrix diverge with the inverse power of wa
number. The asymptotic calculation, studied in Sec.
yields exact results for thek→0 limit, and shows that in fact
the arrays are not stable. It is difficult to close the gap
tween the two regimes of very long and intermediate wa
lengths. From the disparity of results we can conclude o
that the eigenfrequencies must vary rapidly in the gap. No
theless, the numerical evaluation for nonvanishingk shows
only propagating modes. This indicates that the arrays
stable in periodic boundary conditions up to a maximu
system size corresponding to the minimum wave num

t
h

FIG. 10. Plot of the functionc1
(0)(u,w) for the fcc array, as

given by Eq.~49!. The array is unstable where the function is po
tive.
2-7
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beyond which all modes are stable. For the bcc array we
that in the direction of maximum growth the eigenfreque
cies are real fork.0.000 1532p/d. For the fcc array the
eigenfrequencies are real fork.0.000 1732p/d for the di-
rection of maximum growth. We therefore call these arra
mesoscopically stable.

The existence of stable settling arrays with small fluct
tions in particle velocity is important for the theory of sed
mentation. As mentioned earlier, theory and numerical co
putations with randomly positioned particles lead to parti
velocity fluctuations that diverge with the size of the syst
@11–13#. For mesoscopically stable arrays the particle velo
ties are small and the microstructure remains close to
regular lattice configuration. Macroscopic instability may
prevented by a limitation on the size of the system. Part
swirls seen in experiment@29# may possibly be understoo
as sedimentation waves.

The calculations can be extended in various ways. T
calculation for long wavelengths of Sec. IV in principle ca
be carried out to next order in wave number. This wou
ys

05140
d
-

s

-

-
e

i-
e

le

e

exhibit the limiting behavior in more detail. It would also b
of interest to vary the direction of gravity with respect to t
crystal axes, and to investigate how this affects the instab
at long wavelengths. Finally, it would be of interest to exte
the calculation to higher order in density. This would be
challenging task, since it would require inclusion of high
order force multipoles and an arbitrary number of reflectio
between particles. Nonetheless, the periodicity of the ar
can be exploited.

Now that the concept of mesoscopic stability has be
established for periodic arrays it would be of interest to e
plore the stability of disordered arrays along the same lin
Conceivably, a disordered microstructure can be constru
that yields stability at short and intermediate wavelengt
even though it fails on the macroscopic scale.

Finally, it would be of interest to study the vibrations o
particles about their lattice positions in finite stable arra
from a statistical point of view. This would require a decom
position of the vibrations in sedimentation waves, and a p
tulated statistical distribution of wave amplitudes.
nd

.
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