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Mesoscopic stability and sedimentation waves in settling periodic arrays
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The stability of a periodic array of particles settling in a viscous incompressible fluid under the influence of
gravity is investigated in the framework of the point sedimentation model. The simple cubic array is unstable,
but the body-centered and face-centered cubic arrays with gravity directed along one of the crystal axes are
mesoscopically stable, i.e., they are stable except for very long wavelength in a certain domain of directions of
the wave vector. In such mesoscopically stable arrays the instability is suppressed in periodic boundary
conditions for systems smaller than a maximum size. In a stable finite system the particles perform small
motions about the positions of the regular array, and sedimentation waves propagate through the system.
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[. INTRODUCTION respect to the direction of gravity, i.e., they are stable except
for very long wavelength of the disturbance. Mesoscopically
The average velocity of particles and fluid in a suspensiorstable arrays are unstable on a macroscopic length scale, but
of spheres settling in a viscous incompressible fluid has beeifie instability is suppressed in periodic boundary conditions
studied in detail for both ordered arrays and disordered sydor systems smaller than a maximum size that is many times
tems of particles. In a pioneering work Hasimp1d showed larger than the size of a unit cell of the array.
how to construct and interpret a solution of the steady state

Stokes equations for infinite regular arrays. At low particle || PERTURBATION OF HASIMOTO'S SOLUTION
volume fraction¢g the sedimentation velocity decreases from . . . . _
the Stokes value in proportion t¢'3, and it steadily de- We consider a system of identical spherical particles of

creases further at higher volume fractl:dn_g]. Batche|0r[4] radius a immersed in a viscous incompressible fluid with

first showed that for disordered systems, with complete neshear viscosityy. In Hasimoto’s solution of the steady state

glect of correlations in particle positions, the sedimentationStokes equations the particle centers are located at a regular

velocity decreases rapidly with volume fraction, in propor-array of positions

tion to 1—-6.55¢p. Calculations to higher order in volume

fraction [5,6] suggest that the sedimentation velocity of a Rn=Nid+tNxa8+nzaz (Ng,Np,N3=0,£1,%2,...),

disordered system vanishes at a volume fraction of about (1)

20%. The lack of experimental evidence for this phenom- ] o

enon indicates that the assumption of a disordered harfyhereéa;,a,, andas are the basic vectors determining the

sphere distribution is not corref?]. The determination of Uunit cell of the array. The fluid velocity and pressure

the statistical distribution of a disordered sedimenting sussatisfy the linear Navier-Stokes equations

pension and the calculation of the corresponding sedimenta- 5

tion velocity is still an open problef8—10|. nVv—Vp=—F(r), V.v=0, 2
The calculation of the variance of particle velocity fluc-

tuations leads to worse difficulties. Even for dilute systemsWhereF(r) is the force density acting on the fluid. In point

where the point approximation is reliable, the variance di-approximation the force density is given by

verges with the size of the system if the particle distribution

is random[11,17. It has been suggested that a form of hy-

drodynamic screening is necessary to keep the variance finite F(r)= En: K&(r=Rn), )

[13]. The divergence with the size of the system is not seen

in experiment[14]. Several theoretical explanations have \\hereK is the force of gravity acting on each particle. Again

been advancefll5-19. . _ _in point approximation Hasimoto’s solution for fluid velocity
In the following, we study the stability of sedimenting ;.4 pressure takes the form

periodic arrays in point approximation. The point approxima-
tion applies to sufficiently dilute systems. Crowley has ou(r)=—U+Ty(r)-K
shown that linear and planar regular arrays are not stable H H '
[20,21], but he reserved judgment on three-dimensional ar-
rays. Three-dimensional regular arrays are reputed to be un- pu(r)= iK- r+Qu(n-K,
stable[10,22—-24. We find that such arrays are mesoscopi- Ve
cally stable for suitable crystal structure and orientation with
wherev. is the volume of the unit cell and the Green func-
tions T (r) andQy(r) have the periodicity of the lattice. The
*Electronic address: ufelder@physik.rwth-aachen.de Hasimoto tensof,(r) has the property
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_ K-R . Rg . R, KR
LCTH(r)dr 0, ©) Faﬁ(R)—(saﬁ?—Ka%"- b~ 3 RaRs:
(13
so that in point approximation U is the mean fluid velocity
related to the forcek by K={U, where {=6mna is the  We note that the tensor is traceless,
friction coefficient of a single particle. Hasimoto has consid-
ered corrections due to finite particle size. His calculations TrF(R) =0, (14)

were complemented by Zick and Hom|2] and by Sangani

and Acrivos[3]. . . ~ sinceV-T(r)=0. In the following section we study the so-
In Hasimoto's solution the regular array of particles is atjytion of the linear equations of motiof1).

rest. Next we consider a situation where the particles are

displaced from the regular positions. The actual position of

the particle corresponding to lattice sk will be
r=Ry+ S, (6)

with displacement vectas,. The fluid velocity and pressure
are modified to

v(r)=vn(N+> [Tr=r)—T(r—Ry)]-K,

(7)
p<r>=pH<r)+; [Q(r—ry)—Q(r—Ry)]-K,
with Oseen tensor and vector
1 1+ o
T(f)—% — Q(f)—4ﬂ_r2- 8

lIl. LINEAR EQUATIONS OF MOTION

Crowley’s results on one- and two-dimensional arrays
suggest that the regular arrays studied by Hasimoto are not
stable if the particles are free to move. In this section we
study stability by use of the linear equations of motiad).

The periodicity of the regular array suggests plane wave so-
lutions. Substituting a plane wave of the form

sy(t) =uexpik- R,—iwt), (15
we obtain
OkF(K) - U= 0 (KU, (16)
with characteristic frequency
K
o= Py—e (17

The sums converge if the displacements decay sufficiently

fast with distance from the origin. The particle velocity
and the forceK are related by

K={(up—vy), C)
wherev, is the velocity field incident on particle. To first
order in the displacements,

ds,

T (10

=2 (5750 VT(N)|g g, K.

The real-valued dimensionless tensf%(rk) is given by the
lattice sum

F(k)=id2>," F(R,expik-R,). (18)

Here we have used the antisymmetry under inverskon,
(= R)=—F(R). Upon substitution of Eq.13) we can evalu-
ate the lattice sum by the method of Ewald summafizh.
For k#0 the lattice sum is absolutely convergent, but the
sum diverges in the limik—0. It turns out that the eigen-

By symmetry the first term does not contribute, so that weféquencies remain finite.

can write
ds, K
E_ - 8777] = an'S‘nv (11)
where the tensoF,,= F(R,—Ry) is given by
E(R—2F(R)-K 12
(R)=—=T(R) K, (12

with the definitions‘i’( R)=87»T(R) and K=K/K. The ten-
sor F(R) has Cartesian components

In the notation of Nijboer and de Wetf@5] we consider
the lattice sum

k , expik-Ry)
S''R=—,p|= B EE—— 19
( 2m p) 2 |IR—R,|?? 19
The tensorIA:(k) can be expressed as
F(K)=X(K) 1+ Y(k) +Z(K), (20)

where Y(k) is antisymmetric andZ(k) is symmetric. The
scalarX(k) is given by
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9 k 3 K 1 T'(p,mx3)
X(k)=d’K- - S’ 0‘—,—). 21 ol — pl= p o TN iq
( ) ok 272 ( ) S| 0 27T,p dZPF(p) 2 Xﬁp EX[Z(27TIq Xn)
By inversion symmetry of the array the sush(0|(k/27),p) wP P32 203
is real for realp and symmetric under inversida— —k. The - F + va En: [h,—q
antisymmetric tensoY (k) has components
3
.9 . 4 k 3 xT —p+—,w|hn—q|2) : (29
=_—g2 — K.,—|sl0o— = 2
Y o5(K) d (K“ﬁkﬁ Kﬁaka)s (0 277,2) (22

wherev,=a, - (a,X a3)/d® is the dimensionless volume of a
unit cell, I'(p,z) is the incomplete gamma function, ahg
are the reciprocal lattice vectors

and the symmetric tensa@(k) is given by

3

Z(k)=3d%K- (23)

|93
akakak 27’2 h,= (n1b; + n,b,+nsbg)/d, (30)

The tensoiF(k) depends only on crystalline structure and onwheren,,n,,n; are integers. We need expressi@9) for
the direction of the force. For each wave vedtan the first  the valuesp=2 andp=32.
Brillouin zone[26] there are three eigenfrequencieék). The differentiations in Eqs(21)—(23) can be performed
Actually, it suffices to consider only half the first Brillouin in the Ewald representation of the lattice sums. The required
zone, because the dynamical matrix has the symmetrjattice sums can be evaluated straightforwardly for selected
|“:(— k)= —F(k). The eigenfrequencies fark are related by wave \/Aectorsk, providedk is not too small. The dynamical
matrix F(k) is calculated from the derivatives defined in Egs.
0 (—K)=—0*(k), og(—k=—wk). (29 (21)—(23) of the Ewald sum given by Eq29). The numeri-
cal calculation fails at long wavelengths because of the di-
It suffices to consider wave vectoksfor which wo(k)=0,  vergence of the dynamical matrix. Typically the smallest
since the waves fork describe the same physical situation Wavenumber considered in the calculation ks=0.001
as fork. We call the wave with frequenay,(k) the acoustic X 2m/d.
wave, since we find thab,(k) tends to zero fok—0. For Consider first the simple cubic array with basic vectors
unstable modes the eigenfrequencies, (k) of the optical & =(1,0,0)d, a=(0,1,0)d, 8=(0,0,1)d and gravity di-
waves are Comp|ex Conjugate_ We denote the growth rate dﬁCted along the axis. We show in the fO“OWing section that
unstable waves as,(k)>0. One can study the behavior in this array is unstable for modes with wave veckowith
the limit k— 0 in a separate asymptotic analysis keeping onlyPolar angleg such that the polynomial
the dominant terms.

It is convenient to use wave vectog=kd/27 and to A(6)=(sirf0)[1—10.7372 co¥d] (31
define componentsgg,q,,ds) in terms of the basic vectors
of the reciprocal lattice by is positive. The maximum growth rate fér= /2 in the limit
of smallk is lim,_ g\ ;(k cose,ksing,0)=2.878 5wy inde-
g=(qg,b1+q,b,+qsbs)d. (25 pendent of the direction of in the horizontal plane. Note

that the growth rate does not vanish in the likzit 0, so that
Similarly for the vectorx=r/d we define components the instability is not of the type discussed by Latstial.
X1,X2,X3 by [24] on the basis of macroscopic equations. These authors
did not take proper account of the long-range hydrodynamic
X= (X181t X8, 1+ X383)/d. (26)  interaction. In Fig. 1 we plot the growth rate (k) for k
=(k,0,0). The corresponding eigenvector has components in
These are related to the cartesian vector components the x and z directions. The third mode has vanishing eigen-

=(x,,2)=(r1,r,r3) by the linear transformation frequency and ei_genvector in tlyaalirection._ _ _
Next we consider a body-centered cubic array with basic

27) vectors [26] a;=(1,1,—1)d/2, a,=(—1,1,1)d/2, a3=(1,

o= SupXp: —1,1)d/2 and gravity directed alongs. We define polar

with matrix elementsS,;=e,-€;. Since the scalar product angles @,¢) of the unit vectork=k/k by
k-r equals 2rg-x one has o R o
k=agcosf+b;sinf cose+agxXb;sindsing, (32
270 ,=Sp.Kp .- (28
with reciprocal lattice vectob;=(1,1,0)d. The array is un-
The Ewald representation used by Nijboer and de We¢  stable for modes with wave vectkiof small wave numbek
reads in present notation and with direction @,¢) such that the polynomial
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FIG. 1. Plot of the growth rate.;(k) for k=(k,0,0) for the
simple cubic array with gravity directed along thexis. The basic FIG. 3. Plot of the eigenfrequencies_;(k),wo(k), andw, (k)
lattice vectors ar@, =(1,0,0)d, a,=(0,1,0M, a;=(0,0,1)d. (bottom to top as functions of wave numbek for direction k

A( 0,<p):sin20[1— 2 8539 iR coLd =(1,1,1)4/3 for the bce array as described in the caption to Fig. 2.

+1.0090 sifié cosé sin 3¢] (33 Finally we consider the face-centered cubic array with

) N ) ] .. basic vectors [26] a;=(1,1,0)]/2,a,=(0,1,1)d/2, a5
is positive. The growth rate is maximal for direction =(1,0,1)d/2 and gravity directed alonas. This array is also
(00,¢0)=(0.708877/2), as well as for €o,77/6) and  megoscopically stable. The asymptotic analysis of the fol-
(60,117/6), and then takes the value=5.8016Gvy . The lowing section shows that the frequencies ;(k) become
eigenfrequencies vary rapidly withfor smallk. We find that complex for very smalk for directions 6,¢ such that an
the eigenfrequencies are real except for sidih particular, angle polynomialA(8, ) is positive. In this case the poly-
for direction (fo,¢0) the eigenfrequencies are real for — omia)is a sum of products of c@sin 6,cose,sine consist-
>0.000 15¢27/d. Hence the bce array is mesoscopically jhg of 12 terms with coefficients calculated from lattice
stable. In Fig. 2 we plot the phase velociy(k)/k for k. gyms. The polynomial is positive in four regions on the unit
=0.001x2/d as a function of direction fop<m/2. The  gphere, related by reflection. The growth rate is maximal for
other part of the surface follows by reflection with respect toy;rection (60, 90) = (0.3463,0.9553) and its inverse, and
the origin. In Fig. 3 we plot the three dispersion curves forgiven by lim. . o\1(ko) =5.2887wy . For this direction the
w+1(k),wq(k) as functions of wave number in the first Bril- eigenfrequenocies are real for 0.000 1 27/d
louin zone for direction (1,1,1)/3. Typically the two larger In Fig. 4 we plot the phaée velocity (I.<)/k for K
eigenfrequencied..,(k) di”‘?f significantly frqm the lower :0.00b<éw/d as a function of direction foﬁ?< /2. Polar
ggreo' U\}g ;ﬁ:jnnoljr;heeritzha[ﬁ; tﬁg]t(-::[r;]fereec};:xleecstésr 2évyriizgfiiéafngles are defined as in E§2) with reciprocal lattice vector

' =(1,1,—1)/d. The other part of the surface follows by

:ic())r:)sog?k is predominantly transverse, also for other dlrec'reflection with respect to the origin. In directions perpendicu-
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FIG. 2. Plot of the phase velociyy(k)/k in units wyd/27 for FIG. 4. Plot of the phase velocityy(k)/k for k=0.001

k=0.001x 27/d for the body-centered cubic array with basic vec- X2#/d for the face-centered cubic array with basic vectars
tors a;=(1,1-1)d/2, a=(—1,1,1)d/2, a3=(1,—1,1)d/2 and =(1,1,0)d/2, a,=(0,1,1)d/2, a3=(1,0,1)d/2 and gravity directed
gravity directed alonggs. The phase velocity is plotted for the alongas. The phase velocity is plotted for the range of directions
range of directions & < 7/2, 0<¢<27. 0<0<m/2, 0<p<2m.
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3 system. The structure of the three modes for each wave vec-
tor is determined by lattice symmetry and direction of the
2 gravitational field. The frequency of each mode is propor-
w 1 tional to the strength of the field. In a recent experini@
wK spheres of radius=1.5x10"2 cm and mass densitp,
0 =4.11 glend in a fluid of shear viscosityy=10 P and mass
density ps=0.965 g/cmi were used. With gravitational ac-
-1 celeration g=983 cm/set and interparticle distanced
=0.1 cm this corresponds to a characteristic frequangy
-2 =0.017 s'1. Dispersion curves of sedimentation waves have
-3 not yet been studied experimentally.
0 0.1 0.2 0.3 0.4 0.5

kd/(2mV/3) IV. LONG-WAVELENGTH LIMIT

FIG. 5. Plot of the eigenfrequencies_;(k),wq(k), andwl(kz As noted above, the dynamical matlﬂ'e(k) diverges in
(bottom to top as functions of wave numbek for direction k the smallk limit due to the long range of the hydrodynamic
=(1,1,1)//3 for the fcc array as described in the caption to Fig. 4.interaction. We must study the limiting behavior by

asymptotic analysis keeping only the dominant terms. The
lar to gravity the frequency,(k) is vanishingly small for all  analysis makes clear that the limiting behavior depends on
values of the wave number. The plot differs significantlythe direction of the wave vector with respect to the crystal
from the corresponding plot for the bcc array shown in Fig.axes. In this section we present explicit results for the three
2. As one would expect, the crystal structure has a strongubic arrays with gravity directed along the basic veator
influence on the shape of the dispersion surface. In Fig. 5we The termn=0 in the second sum in Eq29) for p=3
plot the three real eigenfrequencies as functions of waveields a logarithmic singularity for smal, since
number for direction (1,1,1)/3. The sum of the three
eigenfrequencies is always close to zero. We find numeri-
cally that the eigenvector corresponding dg(k) is pre- I'(02)=E4(2) (34)
dominantly transverse, also for other directionskof

For other directions of the gravity field the fcc array be-
comes more unstable. As an example we show in Fig. 6 th
variation of —Rq w_4(k)] and the growth rate\,(k) for

aémd the exponential integr&él;(z) has the expansiof28]

wave vectork=0.001sin(#/8),0,cos{/8)]27/d as the di- C (=)

rection of gravity changes from (l,O,lﬁ to (0,0,1) in the Ei(z)=—y—Inz— E | (| argz|< ), (35
plane spanned by these two vectors. This shows that the =1 NN

orientation of the lattice with respect to gravity is quite

relevant.

- . . where vy is Euler’s constant. The functioh(—1,z) corre-
In periodic boundary conditions the mesoscopically Stablesponding top=3 is given by
2

arrays are stable for system size less than a maximum value:.
The sedimentation waves found above for such stable arrays

are interesting, since we are dealing with a purely dissipative e ?
IN'-1z=—-1(0.2). (36)
z
3.5
3
2 5 The stronger singularity is compensated by the factor multi-
—w_y (k) 5 (k) plying theI” function in Eq.(29). Performing the derivatives
w LN wK in Egs. (21)—(23) we find that the singular behavior of the
1o e tensorli(k) for k— 0 takes the form
1 e
0.5 //
1
0 R N 1 N
0 0.2 0.4 0.6 0.8 Faﬁ(k,K)=@2 CapysKakgk ,Ks+0O(1), (37)
v

kd/2m

FIG. 6. Plot of frequency— R w_4(k)] (solid curve and

with numerical coefficient€ 4, s depending on lattice struc-
growth rate\ 1(k) (dashed curvefor the fcc array for wave vector

k=0.001 sinm/8.0,cosf8]) 2/d the  direc ¢ i ture. In order to find the coefficients we need to expand
=0.001 sin7/8,0,cos m/d as the direction of gravity _, 3 . .

changes from (1,0,1)/2 to (0,0,1) in the plane spanned by theseS (O|(k/27r),2) to quadratic order in the components kof
vectors. andS'(0|(k/2m),3) to quartic order. Thus we write
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k 1 ,n_2p—3/2
o

s'(o, = 2o-2r
2P| ") va

3
_ _ 2 3
Va p+2,7rq)

1 2.5
+Ro(p)+ 5 R{P(p)aiqy

+0(kS). (39

1 (4)
+ﬂRijk|(p)Qqu'QkQ|

Due to invariance under reflections there are no terms odd in

g. The coefficientsR follow by expansion in Eq(29). For

the cubic lattices one can use symmetry considerations to

reduce the number of coefficients that need to be calculated.
The characteristic equation

=

0.5
defwl—F(k)]=0, (39)
which vyields the eigenfrequencies is a cubicarF o/ wy 0 0 T 5 3 7 B ¢
that takes the form @
@3+ Cr2+ Cr+Co=0, (40) FIG. 7. The white region is the domain of directions on the unit

sphere for which the bcc array is unstable in the long-wavelength

with dimensionless coefficients,c;,C,. It turns out that for ~ limit.

the cubic arrays the coefficients remain finite in the likit

—0, though the limiting behavior depends on the direction C(lo)( 6,¢)=sir’ 0 8.2861 88.9699 co%/]. (44
in which the origin ofk space is approached. The coefficients

¢, andc, vanish ak— 0, whereas the coefficien tendsto ~ The polar angles are defined as in E82) with the above

a nonvanishing constant. As a consequence the footgk) ~ Pasic vectors and reciprocal vectgr=(1,0,0)d. The func-
tion is positive for 1.44756<1.6641. The maximum

tend to
growth rate is ford= 7/2 and takes the value
~(0) — _ 0
0C(0,9) === (0,9), (41) lim,(k cose ksing,0)=2.87856  (45)
k—0

Wherec(lo)(a,¢) gives the angular dependence of the coeffi-

cientc,(k) in the limit k—0. The rootwg(k) tends to independent of the direction &fin the horizontal plane. For

the functionc{"(6,¢) one finds
c(6,¢) kd

" (1) -
c®6,¢) 27

w5 (0,¢)= (42) c§(6, ) =sin?6[ 17.165 co®— 184.304 cods], (46)
showing that the limiting value of the phase velocity of the
acoustic wave is independent of the azimuthal anrgle

For the bcc array, as defined at the end of the preceding
section, one finds for the functiar{® (6, ¢)

wherec{(6,¢)k gives the limiting behavior of the coeffi-
cientcy(k) for small k.

The stability of the array is determined by the sign of the
coefficientc(lo)(ﬂ, ¢). For each of the cubic lattices we find a
domain of angles for which the coefficient is positive, so that

(0) —gj —
these arrays are unstable. The phase velocity of the acoustic c1(6, ) =sir’6[ — 69.4836+ 198.3000 co&

wave tends to —70.1095 sirg cosé sin 3¢], (47)
B c§(6,¢) wyd In Fig. 7 we plot the region of thed(¢) plane, where this
vpn(6,¢)=— c0(9,¢) 27 43 function is positive, and hence the array is unstable. In Fig. 8

we plot the functionc{”(6,¢) itself. The growth rate is

in the limit of small k. This diverges for angles where maximal for direction @y, ¢o)=(0.70887/2), as well as for
c{9(6,) changes sign. (6o,7m/6) and (0p,117/6), and then takes the value,

The functionsc{?(6,¢) andc{P(6,¢) can be evaluated =5.801Gvy . For the functionci!(6, ) one finds
explicitly in terms of sums of products of trigonometric func-

tions with coefficients given by Ewald sums. For the simple ciM(6,0)=—1291.91%+1406.33s*
cubic lattice with basic vectors as defined above Bd) and 5 2
: o : : +703. —
with gravity directed along the-axis one finds for the func- 703.138% (4u"~1)
tion c{?(6,¢) —600.4122s% (4u?—1), (48)
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FIG. 8. Plot of the functior{®)( 9, ¢) for the bcc array, as given _ FIG. 10. Plot of the fUﬁCtiom(lo)(g,w) for the fcc array, as
by Eq. (47). The array is unstable where the function is positive. given by Eq.(49). The array is unstable where the function is posi-
tive.

with the abbreviations =cosé, s=sin 6, u=cose, v=sin¢. ) ) o
For the face-centered cubic array with basic vectors agrowth rate is  maximal for direction 66,¢o)
defined above and with gravity directed aloagone finds ~=(0.3463,0.9553) and its inverse, aqd given by
for the functionc{?(6, ¢), limy oA 1(Ko) =5.2887w . For the functionc§?(8,¢) one
finds
c{9(6,¢0)=66.76su(1—25°—s?u?) — 62.62 25>~ 84.4%"

(1) _ 4 3c2,12_ 23,3
cy(60,0)=97.2F"su+1306.24°s“u“—230.14“s°u
—100.9%2s2u%+50.45%%0u%+94.41 3sp 6 (0:0)

—474.9%s*u*—12.5&°u’+ 137.56 *sv
—1657.003%s%up — 198.79%s%u’v

+285.4Y2s%up — 142.78*up — 151.05s%u%

—169.935%3, (49

_ . . —611.65suy — 75.03°u’v + 720.403s%?
where the angles are defined as in E2R) with the above

basic vectors and with reciprocal lattice vector=(1,1, —6.202s%up?+ 3.62rs*u%? - 126.35°u?
—1)/d. In Fig. 9 we plot the region of thef(¢) plane, _ 2.3.3 4,3 5 2 3
where this function is positive, and hence the array is un- 262.13°s°y"+215.525 uv"~ 121.44°u"y
stable. In Fig. 10 we plot the functioti® (6, ¢) itself. The —544.995%4— 113.785Up% — 46.41555.

(50

These asymptotic results suggest that the fcc array is the
most stable configuration of the three cubic arrays with grav-
ity directed along one of the basic vectors.

V. DISCUSSION

Direct numerical evaluation of the characteristic equation,
as presented in Sec. Il for the bcc array, suggests that both
the bcc array and the fcc array with gravity directed along
one of the basic vectors are stable. For very srkallrect
numerical evaluation is not feasible, since the elements of
the dynamical matrix diverge with the inverse power of wave
number. The asymptotic calculation, studied in Sec. 1V,
yields exact results for thie— 0 limit, and shows that in fact
the arrays are not stable. It is difficult to close the gap be-
tween the two regimes of very long and intermediate wave-
lengths. From the disparity of results we can conclude only

that the eigenfrequencies must vary rapidly in the gap. None-
¢ : . o
theless, the numerical evaluation for nonvanishinghows

FIG. 9. The white region is the domain of directions on the unitonly propagating modes. This indicates that the arrays are
sphere for which the fcc array is unstable in the long wavelengttstable in periodic boundary conditions up to a maximum
limit. system size corresponding to the minimum wave number
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beyond which all modes are stable. For the bcc array we finéxhibit the limiting behavior in more detail. It would also be
that in the direction of maximum growth the eigenfrequen-of interest to vary the direction of gravity with respect to the
cies are real fok>0.00015<2#/d. For the fcc array the crystal axes, and to investigate how this affects the instability
eigenfrequencies are real far>0.000 1< 2#/d for the di-  at long wavelengths. Finally, it would be of interest to extend
rection of maximum growth. We therefore call these arraygshe calculation to higher order in density. This would be a
mesoscopically stable. challenging task, since it would require inclusion of higher
The existence of stable settling arrays with small fluctua-order force multipoles and an arbitrary number of reflections
tions in particle velocity is important for the theory of sedi- between particles. Nonetheless, the periodicity of the array
mentation. As mentioned earlier, theory and numerical comean be exploited.
putations with randomly positioned particles lead to particle Now that the concept of mesoscopic stability has been
velocity fluctuations that diverge with the size of the systemestablished for periodic arrays it would be of interest to ex-
[11-13. For mesoscopically stable arrays the particle velociplore the stability of disordered arrays along the same lines.
ties are small and the microstructure remains close to th€onceivably, a disordered microstructure can be constructed
regular lattice configuration. Macroscopic instability may bethat yields stability at short and intermediate wavelengths,

prevented by a limitation on the size of the system. Particleeven though it fails on the macroscopic scale.

swirls seen in experimer29] may possibly be understood
as sedimentation waves.

Finally, it would be of interest to study the vibrations of
particles about their lattice positions in finite stable arrays

The calculations can be extended in various ways. Thérom a statistical point of view. This would require a decom-
calculation for long wavelengths of Sec. IV in principle can position of the vibrations in sedimentation waves, and a pos-
be carried out to next order in wave number. This wouldtulated statistical distribution of wave amplitudes.
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